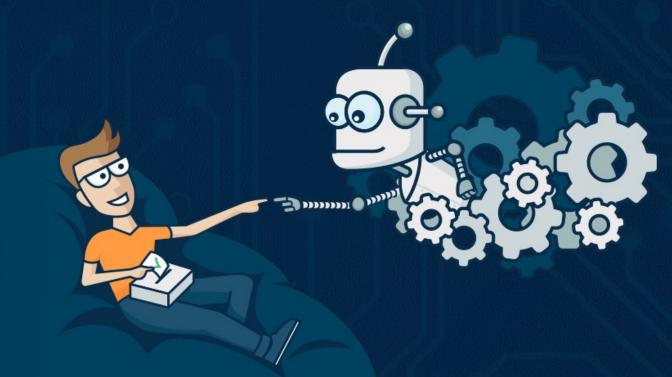
# Designing Optimal Voting Rules

Nisarg Shah
University of Toronto

Email: nisarg@cs.toronto.edu


Twitter: @nsrg\_shah











## **Collaborators**









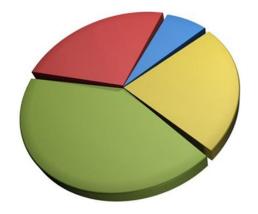








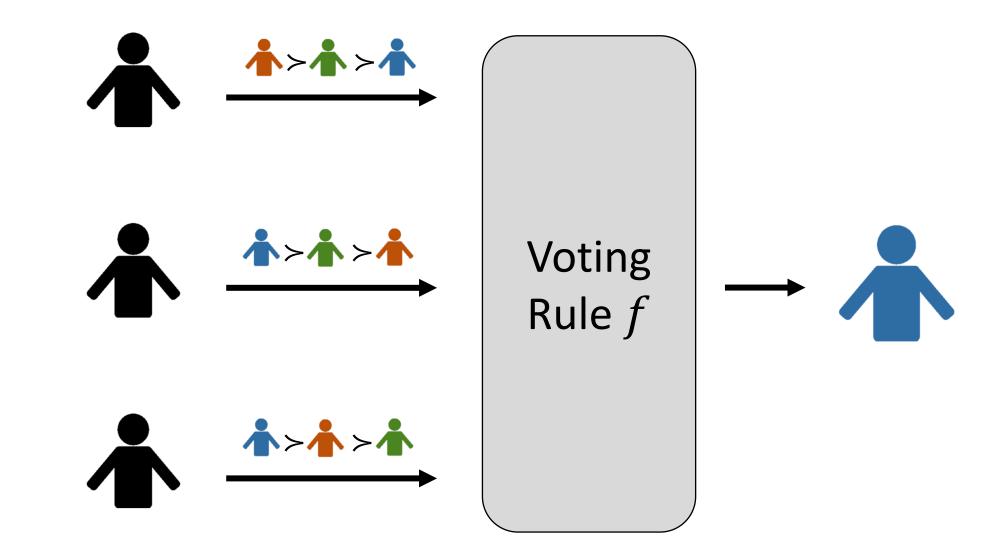




## Voting

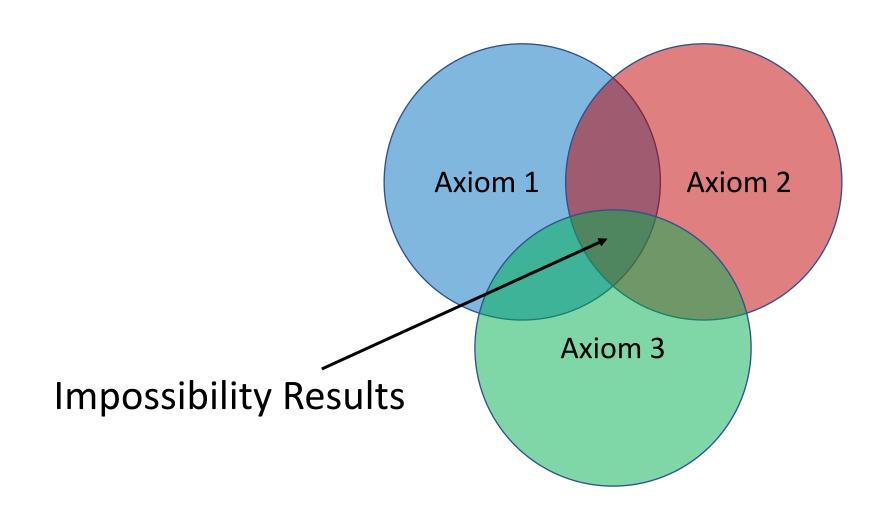
Algorithm for aggregating individual preferences to make collective decisions



## **Applications of Voting**



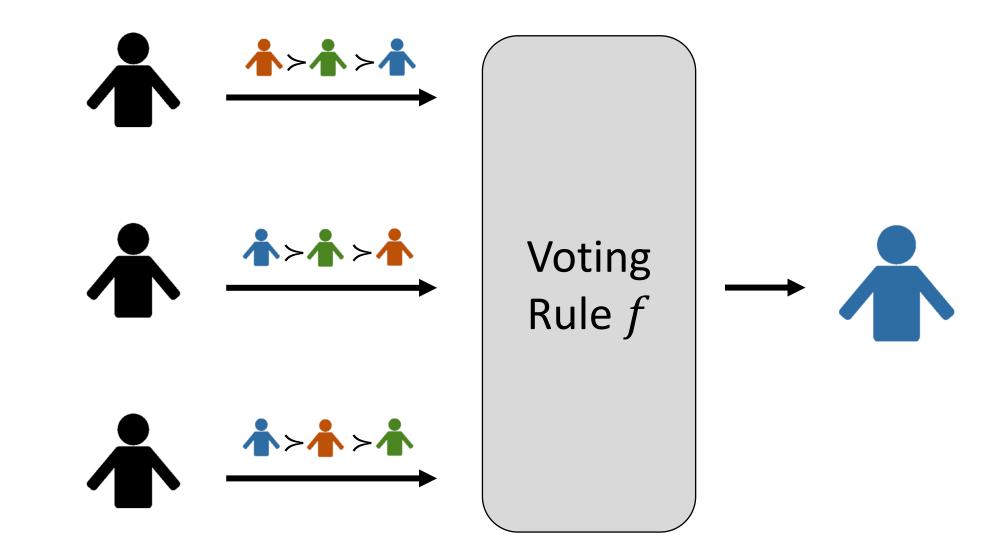


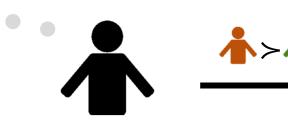



## **Voting with Ranked Ballots**

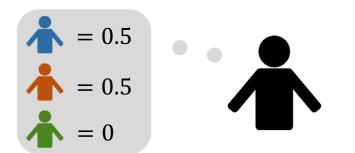



### **Axiomatic Framework**



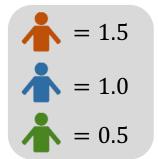

### **Axiomatic Framework**

| Sort:                                       | <b>+</b>             | <b>+</b>           | <b>+</b>           | +                    | +     | <b>+</b>          | <b>\$</b> | <b>+</b>           | <b>*</b>           | <b>+</b>  | +                 | <b>*</b>             | <b>*</b>                | <b>+</b>            | <b>+</b>           | <b>+</b>                          | <b>+</b>             | <b>+</b>           | •                    | <b>+</b>              | <b>+</b> | •                 |
|---------------------------------------------|----------------------|--------------------|--------------------|----------------------|-------|-------------------|-----------|--------------------|--------------------|-----------|-------------------|----------------------|-------------------------|---------------------|--------------------|-----------------------------------|----------------------|--------------------|----------------------|-----------------------|----------|-------------------|
| Criterion                                   | Majority             | Maj.               | Mutual             | Condorcet            | Cond. | Smith/            | LIIA      | IIA                | Cloneproof         | Monotone  | Consistency       | Participation        | Reversal                | Polyt               |                    | Summable                          | Later                | r-no-              | No<br>favorite       | Ballot                | Ra       | anks              |
| Method                                      | majorney             | loser              | maj.               | - Condo              | loser | ISDA              |           |                    | olollopi co.       | o.iotoiio | Continuity        | - araoipanon         | symmetry                | resolv              | /able              | Cummazio                          | Harm                 | Help               | betrayal             | type                  | =        | >2                |
| Approval                                    | Rated <sup>[a]</sup> | No                 | No                 | No <sup>[b][c]</sup> | No    | No <sup>[b]</sup> | Yes       | Yes <sup>[d]</sup> | Yes <sup>[e]</sup> | Yes       | Yes               | Yes                  | Yes                     | O(N)                | Yes                | O(N)                              | No                   | Yes <sup>[f]</sup> | Yes                  | Approvals             | Yes      | No                |
| Borda count                                 | No                   | Yes                | No                 | No <sup>[b]</sup>    | Yes   | No                | No        | No                 | Teams              | Yes       | Yes               | Yes                  | Yes                     | O(N)                | Yes                | O(N)                              | No                   | Yes                | No                   | Ranking               | No       | Yes               |
| Bucklin                                     | Yes                  | Yes                | Yes                | No                   | No    | No                | No        | No                 | No                 | Yes       | No                | No                   | No                      | O(N)                | Yes                | O(N)                              | No                   | Yes                | If equal preferences | Ranking               | Yes      | Yes               |
| Copeland                                    | Yes                  | Yes                | Yes                | Yes                  | Yes   | Yes               | No        | No <sup>[b]</sup>  | Teams,<br>crowds   | Yes       | No <sup>[b]</sup> | No <sup>[b]</sup>    | Yes                     | O(N <sup>2</sup> )  | No                 | O(N <sup>2</sup> )                | No <sup>[b]</sup>    | No                 | No <sup>[b]</sup>    | Ranking               | Yes      | Yes               |
| IRV (AV)                                    | Yes                  | Yes                | Yes                | No <sup>[b]</sup>    | Yes   | No <sup>[b]</sup> | No        | No                 | Yes                | No        | No                | No                   | No                      | O(N <sup>2</sup> )  | Yes <sup>[g]</sup> | O(N!) <sup>[h]</sup>              | Yes                  | Yes                | No                   | Ranking               | No       | Yes               |
| Kemeny-Young                                | Yes                  | Yes                | Yes                | Yes                  | Yes   | Yes               | Yes       | No <sup>[b]</sup>  | Spoilers           | Yes       | No <sup>[b]</sup> | No <sup>[b]</sup>    | Yes                     | O(N!)               | Yes                | O(N <sup>2</sup> ) <sup>[j]</sup> | No <sup>[b]</sup>    | No                 | No <sup>[b]</sup>    | Ranking               | Yes      | Yes               |
| Majority<br>judgment <sup>[k]</sup>         | Rated <sup>[I]</sup> | Yes <sup>[m]</sup> | No <sup>[n]</sup>  | No <sup>[b][c]</sup> | No    | No <sup>[b]</sup> | Yes       | Yes <sup>[d]</sup> | Yes                | Yes       | No <sup>[o]</sup> | No <sup>[p]</sup>    | Depends <sup>[q]</sup>  | O(N)                | Yes                | O(N) <sup>[r]</sup>               | No <sup>[s]</sup>    | Yes                | Yes                  | Scores <sup>[t]</sup> | Yes      | Yes               |
| Minimax                                     | Yes                  | No                 | No                 | Yes <sup>[u]</sup>   | No    | No                | No        | No <sup>[b]</sup>  | Spoilers           | Yes       | No <sup>[b]</sup> | No <sup>[b]</sup>    | No                      | O(N <sup>2</sup> )  | Yes                | O(N <sup>2</sup> )                | No <sup>[b][u]</sup> | No                 | No <sup>[b]</sup>    | Ranking               | Yes      | Yes               |
| Plurality/FPTP                              | Yes                  | No                 | No                 | No <sup>[b]</sup>    | No    | No <sup>[b]</sup> | No        | No                 | Spoilers           | Yes       | Yes               | Yes                  | No                      | O(N)                | Yes                | O(N)                              | N/A <sup>[v]</sup>   | N/A <sup>[v]</sup> | No                   | Single mark           | N/A      | No                |
| Score voting                                | No                   | No                 | No                 | No <sup>[b][c]</sup> | No    | No <sup>[b]</sup> | Yes       | Yes <sup>[d]</sup> | Yes                | Yes       | Yes               | Yes                  | Yes                     | O(N)                | Yes                | O(N)                              | No                   | Yes                | Yes                  | Scores                | Yes      | Yes               |
| Ranked pairs                                | Yes                  | Yes                | Yes                | Yes                  | Yes   | Yes               | Yes       | No <sup>[b]</sup>  | Yes                | Yes       | No <sup>[b]</sup> | No <sup>[p][b]</sup> | Yes                     | O(N <sup>3</sup> )  | Yes                | O(N <sup>2</sup> )                | No <sup>[b]</sup>    | No                 | No <sup>[p][b]</sup> | Ranking               | Yes      | Yes               |
| Runoff voting                               | Yes                  | Yes                | No                 | No <sup>[b]</sup>    | Yes   | No <sup>[b]</sup> | No        | No                 | Spoilers           | No        | No                | No                   | No                      | O(N) <sup>[w]</sup> | Yes                | O(N) <sup>[w]</sup>               | Yes                  | Yes <sup>[x]</sup> | No                   | Single mark           | N/A      | No <sup>[y]</sup> |
| Schulze                                     | Yes                  | Yes                | Yes                | Yes                  | Yes   | Yes               | No        | No <sup>[b]</sup>  | Yes                | Yes       | No <sup>[b]</sup> | No <sup>[p][b]</sup> | Yes                     | O(N <sup>3</sup> )  | Yes                | O(N <sup>2</sup> )                | No <sup>[b]</sup>    | No                 | No <sup>[p][b]</sup> | Ranking               | Yes      | Yes               |
| STAR<br>voting                              | No <sup>[z]</sup>    | Yes                | No <sup>[aa]</sup> | No <sup>[b][c]</sup> | Yes   | No <sup>[b]</sup> | No        | No                 | No                 | Yes       | No                | No                   | Depends <sup>[ab]</sup> | O(N)                | Yes                | O(N <sup>2</sup> )                | No                   | No                 | No <sup>[ac]</sup>   | Scores                | Yes      | Yes               |
| Sortition, arbitrary winner <sup>[ad]</sup> | No                   | No                 | No                 | No <sup>[b]</sup>    | No    | No <sup>[b]</sup> | Yes       | Yes                | No                 | Yes       | Yes               | Yes                  | Yes                     | O(1)                | No                 | O(1)                              | Yes                  | Yes                | Yes                  | None                  | N/A      | N/A               |
| Random ballot <sup>[ae]</sup>               | No                   | No                 | No                 | No <sup>[b]</sup>    | No    | No <sup>[b]</sup> | Yes       | Yes                | Yes                | Yes       | Yes               | Yes                  | Yes                     | O(N)                | No                 | O(N)                              | Yes                  | Yes                | Yes                  | Single mark           | N/A      | No                |

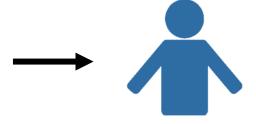

## **Voting with Ranked Ballots**












#### Social Welfare







Apx Ratio ( 
$$\stackrel{1.5}{ }$$
 ) =  $\frac{1.5}{1.0}$ 

## **Optimal Voting Rules with Ranked Ballots**



Minimize distortion
(a.k.a. social welfare approximation ratio in the worst case)

### **Notation**

- N = set of n voters
- A = set of m alternatives
- $\vec{\sigma}$  = observed ranked preference profile
- $\vec{u}$  = underlying utility profile such that for each  $i \in N$ :
  - $u_i$  is "consistent with"  $\sigma_i$
  - $u_i$  is "unit-sum":  $\sum_a u_i(a) = 1$
- For  $x \in \Delta(A)$ :
  - $u_i(x) = \sum_a u_i(a) \cdot x(a)$
  - $sw(x, \vec{u}) = \sum_i u_i(x)$

### **Notation**

Distortion

$$\operatorname{dist}(x, \vec{\sigma}) = \sup_{\vec{u} \, \triangleright \, \vec{\sigma}} \frac{\max_{a \in A} sw(a, \vec{u})}{sw(x, \vec{u})}$$

• Given voting rule *f* 

$$dist(f) = \max_{\vec{\sigma}} dist(f(\vec{\sigma}), \vec{\sigma})$$

- Instance-optimal rule  $f^*$ 
  - Maps every preference profile  $\vec{\sigma}$  to the instance-optimal solution  $x^* \in \arg\min_{x} \operatorname{dist}(x, \vec{\sigma})$
  - Has the lowest distortion on each  $\vec{\sigma}$ , and therefore in the worst case over all  $\vec{\sigma}$

### **Known Results**



# Deterministic Rules [CP'11; CNPS'17]

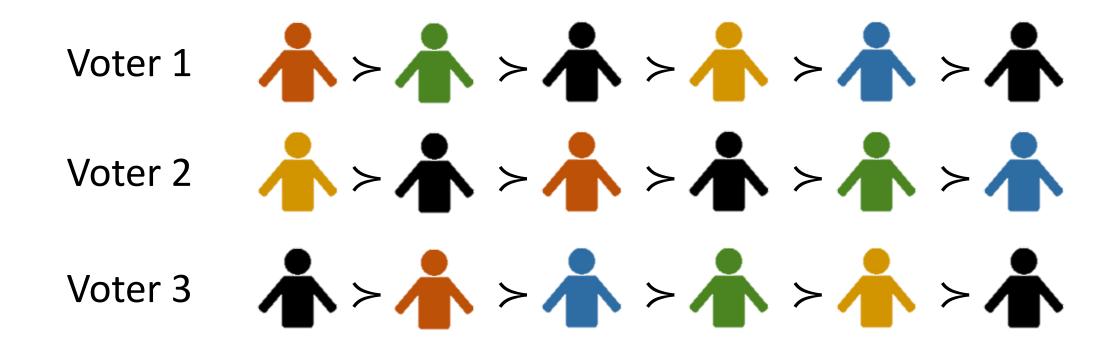
- The distortion of every deterministic voting rule is  $\Omega(m^2)$
- The distortion of plurality is  $O(m^2)$
- The instance-optimal rule can be computed in polynomial time



#### Randomized Rules [BCHLPS'15]

- $\clubsuit$  The distortion of every randomized voting rule is  $\Omega(\sqrt{m})$
- $\bullet$  There exists a randomized voting rule with distortion  $O(\sqrt{m} \cdot \log^* m)$
- The instance-optimal rule can be computed in polynomial time

## **Optimal Randomized Voting Rule**




### Theorem [EKPS'22]

There exists an efficient randomized voting rule with distortion  $O(\sqrt{m})$ 

- "Nicer" rule
- Simpler proof in 3 steps:
  - I. Define "stable lotteries"
  - II. Prove the existence (and efficient computation) of stable lotteries via the minimax theorem
  - III. Derive  $O(\sqrt{m})$  distortion using stable lotteries

## **Step I: Define Stable Lotteries**



• For a set of alternatives  $S = \{ \stackrel{\bullet}{A}, \stackrel{\bullet}{A}, \stackrel{\bullet}{A} \}$  and an alternative  $a = \stackrel{\bullet}{A}$ 

$$V(a,S) = |\{i \in N : a >_i b, \forall b \in S\}| = 2$$

• Lottery S over sets of size k is stable if  $\mathbb{E}_{S \sim S}[V(a,S)] \leq n/k$  for every  $a \in A$ 

## Step II: Prove Stable Lotteries Exist

- Theorem: For every k, a stable lottery over committees of size k exists.
- Proof:

• 
$$\min_{S} \max_{a \in A} \mathbb{E}_{S \sim S}[V(a, S)] \leq \min_{S} \max_{x \in \Delta(A)} \mathbb{E}_{S \sim S, a \sim x}[V(a, S)]$$

$$= \max_{x \in \Delta(A)} \min_{S} \mathbb{E}_{S \sim S, a \sim x}[V(a, S)] \leq \frac{n}{k}$$

- For any  $x \in \Delta(A)$ , consider the lottery  $S^*$ , where we sample k alternatives i.i.d. according to x and replace any duplicates with arbitrary other alternatives
- For each voter *i*:

$$\Pr_{S \sim \mathcal{S}^*, a \sim x} [a \succ_i b, \forall b \in S] \le \frac{1}{k+1}$$

• Hence:

$$\mathbb{E}_{S \sim S^*, a \sim x}[V(a, S)] \le \frac{n}{k+1} < \frac{n}{k} \quad \blacksquare$$

## Step III: Ding Ding Ding!

#### **Stable Lottery Rule**

- W.p. ½ , find a stable lottery S over sets of size  $\sqrt{m}$ , sample  $S \sim S$ , choose  $a \in S$  uniformly at random
- W.p.  $\frac{1}{2}$ , choose  $a \in A$  uniformly at random
- Theorem: Stable lottery rule achieves  $O(\sqrt{m})$  distortion.
  - Let  $a^*$  be an alternative maximizing social welfare
  - For any  $S: sw(a^*, \vec{u}) \leq V(a^*, S) + \sum_{b \in S} sw(b, \vec{u})$
  - Taking expectation over  $S \sim S$ :

$$sw(a^*, \vec{u}) \leq \mathbb{E}_{S \sim S}[V(a^*, S)] + \mathbb{E}_{S \sim S}[\sum_{b \in S} sw(b, \vec{u})]$$

$$\leq 2\sqrt{m} \cdot \left(\frac{1}{2} \cdot \frac{n}{m} + \frac{1}{2} \cdot \mathbb{E}_{S \sim S}\left[\frac{1}{|S|} \cdot \sum_{b \in S} sw(b, \vec{u})\right]\right)$$

$$= 2\sqrt{m} \cdot sw(f(\vec{\sigma}), \vec{u}) \blacksquare$$

## **Thoughts**

#### Stable lotteries

- Introduced by [CJMW19], who show the existence of a stronger form of stable lotteries which bounds V(S',S) for all  $S' \subseteq A$  instead of just V(a,S) for all  $a \in A$
- Requires a much more intricate proof

#### Stable committees

- 16-stable committees exist [JMW20]:  $V(a,S) \le 16 \cdot \frac{n}{k}$  for all  $a \in A$
- Factor 16 cannot be improved to any lower than 2
- Open question: Do 2-approximately stable committees exist?

#### Novel connection

- Choosing a single winner by choosing a random member of a suitably large fair committee
- Connection between fairness (stable lotteries) and welfare (distortion)
  - "If you want to be efficient, it pays to be fair!"

## **Thoughts**

#### Lower bound

- The lower bound [BCHL+15] can be improved to  $\frac{\sqrt{m}}{2}$  with a tighter analysis
- Open question: A gap of factor 4 between this lower bound and our  $2\sqrt{m}$  upper bound

#### Efficient computation

- Minimax stable lottery value is at most  $\frac{n}{k+1}$  whereas we only need  $\frac{n}{k}$
- Solve the two-player zero-sum game approximately via, e.g., multiplicative weights update

#### Unit-range utilities

- $\max_a u_i(a) = 1$  and  $\min_a u_i(a) = 0$
- Stable lottery rule continues to have  $O(\sqrt{m})$  distortion for unit-range utilities
  - Distortion of harmonic rule [BCHL+15] increases from  $\Theta(\sqrt{m\cdot \log m})$  to  $\widetilde{\Theta}(m^{2/3})$

### **Robustness: Committee Selection**

- What if our goal is to select a committee in the first place?
  - Need to define voter utilities for committees
    - Representation utilities:  $u_i(S) = \max_{a \in S} u_i(a)$
    - ullet Apriori, it is not clear if the best possible distortion increases or decreases with k
- Known results [CNPS'17]
  - Deterministic rules:  $\Theta\left(1 + \frac{m \cdot (m-k)}{k}\right)$
  - Randomized rules:

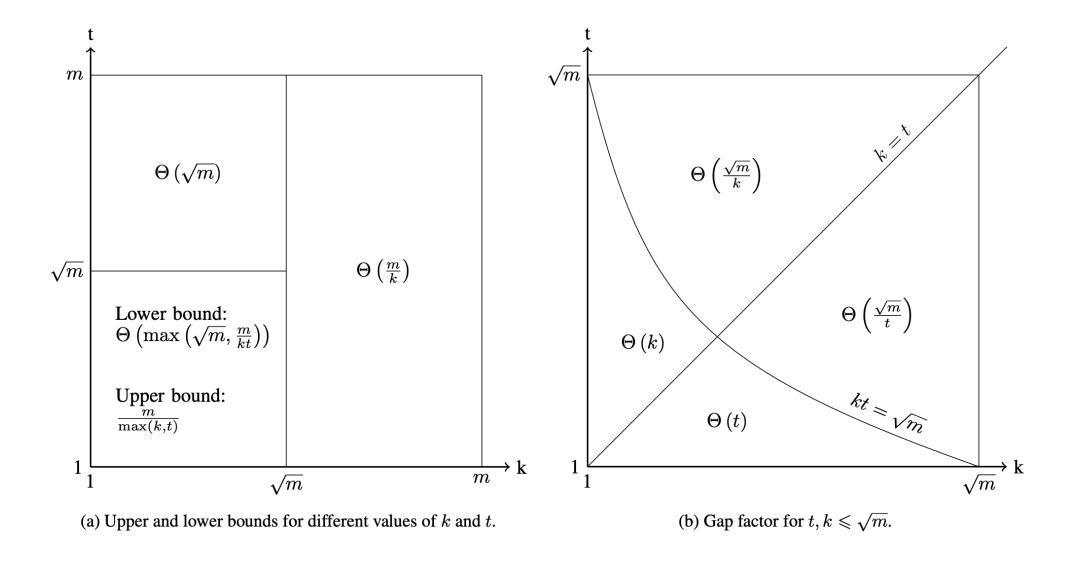
2. **Distortion, randomized rules:** There exists a randomized voting rule  $f^*$  such that

$$egin{aligned} extbf{dist}(f^*) \leqslant egin{cases} 2\sqrt{m \cdot H_m} & ext{if } k \leqslant rac{2 \cdot m \cdot H_m}{m + H_m}, \ 4\sqrt{m \cdot k} & ext{if } rac{2 \cdot m \cdot H_m}{m + H_m} < k \leqslant \left(rac{m}{4}
ight)^rac{1}{3}, \ rac{m}{k} & ext{otherwise}, \end{aligned}$$

where  $H_m = \Theta(\log m)$  is the  $m^{th}$  harmonic number. Moreover, for every randomized voting rule f,

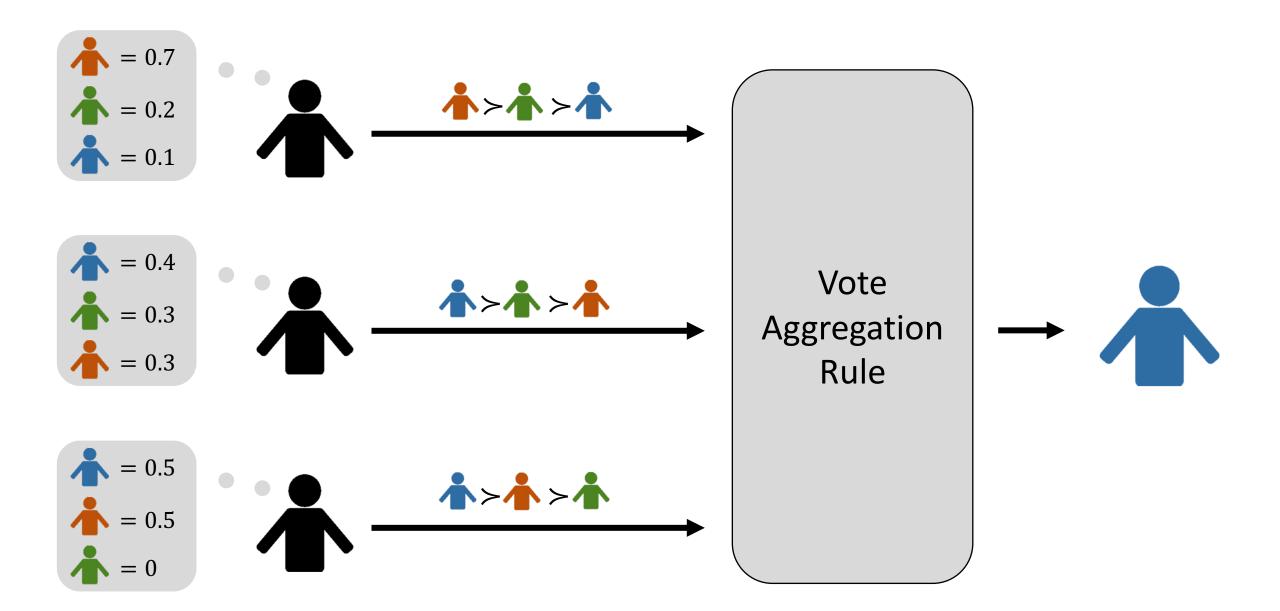
$$extbf{dist}(f)\geqslant egin{cases} rac{\sqrt{m}}{2} & if \ k\leqslant rac{m\cdot(\sqrt{m}-1)}{m-1}pprox\sqrt{m}, \ rac{m}{k+m/k} & otherwise. \end{cases}$$

These bounds are tight up to a factor of  $6.35 \cdot m^{1/6}$ .

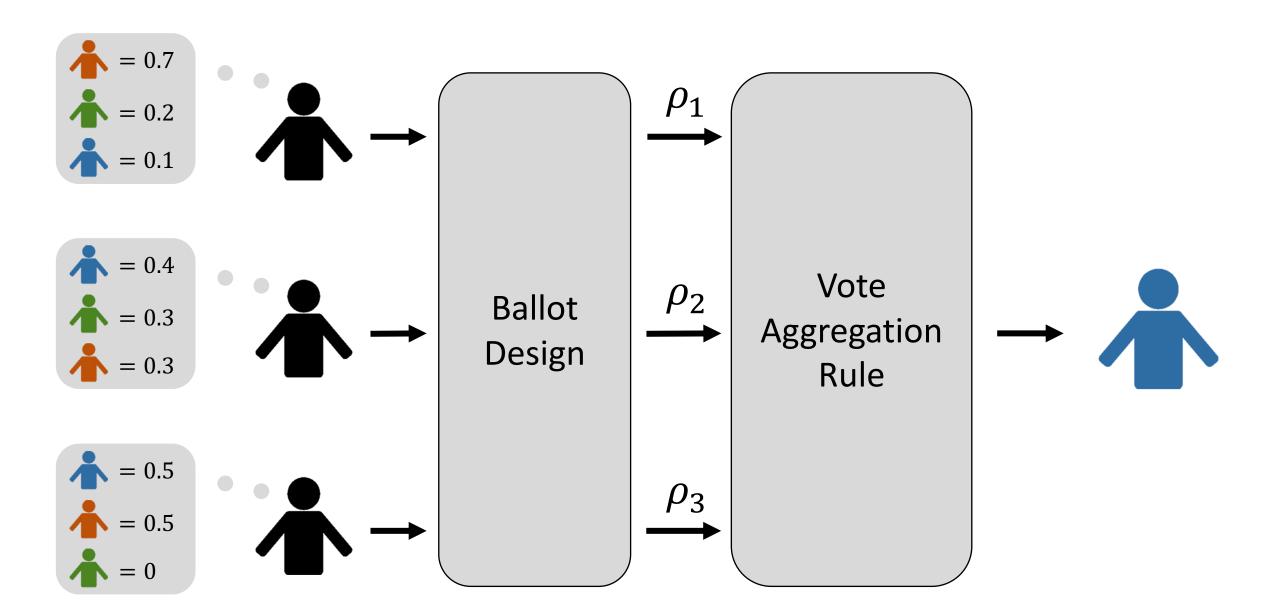

### **Robustness: Committee Selection**

#### **Stable Lottery Rule for Committees**

- If  $k \leq \sqrt{m}$ :
  - W.p. ½, find a stable lottery S over sets of size  $k \cdot \sqrt{m}$ , sample  $S \sim S$ , and choose  $S' \subseteq S$  of size |S'| = k uniformly at random
  - W.p. ½, choose  $S \subseteq A$  of size |S| = k uniformly at random
- If  $k \ge \sqrt{m}$ 
  - Choose  $S \subseteq A$  of size |S| = k uniformly at random
- Theorem [BHLS'22]:
  - Stable lottery rule for committees of size k achieves the optimal distortion of  $\Theta\left(\min\left(\sqrt{m},\frac{m}{k}\right)\right)$
- Corollary:
  - The best possible distortion (asymptotically) does not increase with k


### **Robustness: Partial Preferences**

- What if each voter ranked only her top t alternatives?
  - Arbitrarily complete the preference profile and apply the stable lottery rule for committees!
- Theorem [BHLS'22]:
  - Stable lottery rule for committees on top-t preferences has distortion  $O\left(\min\left(\max\left(\sqrt{m},\frac{m}{t}\right),\frac{m}{k}\right)\right)$
- Theorem [BHLS'22]:
  - Every randomized voting rule on top-t preferences has distortion  $\Omega\left(\min\left(\max\left(\sqrt{m},\frac{m}{k\cdot t}\right),\frac{m}{k}\right)\right)$
- Corollary:
  - For k=1 (single-winner), the bound is  $\Theta\left(\max\left(\sqrt{m},\frac{m}{t}\right)\right)$
  - Optimal  $O(\sqrt{m})$  distortion is already achieved at  $t = \sqrt{m}$
  - No benefit from asking voters to rank more than their top  $\sqrt{m}$  alternatives!




• Open Question: Close the gap when  $k=\omega(1)$  but  $o(\sqrt{m})$  and  $t=\omega(1)$  but  $o(\sqrt{m})$ 

## **Utilitarian Voting with Ranked Ballots**



## **Utilitarian Voting with Generic Ballots**



## **Ballots**

| Ranked Ballot | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> |
|---------------|-----------------|-----------------|-----------------|-----------------|
| Α             |                 |                 |                 |                 |
| В             |                 |                 |                 |                 |
| С             |                 |                 |                 |                 |
| D             |                 |                 |                 |                 |

| Top-t Ballot | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> |
|--------------|-----------------|-----------------|-----------------|-----------------|
| Α            |                 |                 |                 |                 |
| В            |                 |                 |                 |                 |
| С            |                 |                 |                 |                 |
| D            |                 |                 |                 |                 |

| Range Voting | 1 (Worst) | 2 | 3 | 4 (Best) |
|--------------|-----------|---|---|----------|
| Α            |           |   |   |          |
| В            |           |   |   |          |
| С            |           |   |   |          |
| D            |           |   |   |          |

| Approval Ballot | 1 <sup>st</sup> |
|-----------------|-----------------|
| Α               |                 |
| В               |                 |
| С               |                 |
| D               |                 |

## Optimal Voting with Optimal Ballot Design

Tradeoff

#### Distortion

 Lowest distortion allowed by the ballot design when using its best aggregation rule

#### VS

#### Communication

- "Expressiveness" / "cognitive difficulty" imposed
- Crude measure: #bits communicated by each voter



How many bits of information does each voter need to communicate for us to achieve distortion d?

## Optimal Voting with Optimal Ballot Design

• Single-winner voting (k = 1) [MPWS'19]

| Ballot                | Distortion         | Communication                                   |
|-----------------------|--------------------|-------------------------------------------------|
| Ranked                | $\Theta(\sqrt{m})$ | $\Theta(m \cdot \log m)$                        |
| Optimal deterministic | Any $d$            | $\widetilde{\Theta}ig(m/_dig)$                  |
| Optimal randomized    | Any $d$            | $\widetilde{\Theta}\left({}^{m}/_{d^{3}} ight)$ |

• Committee selection of size *k* [MWS'20]

| Ballot                | Distortion                                                  | Communication                                  |
|-----------------------|-------------------------------------------------------------|------------------------------------------------|
| Ranked                | $\Theta\left(\min\left(\sqrt{m}, \frac{m}{k}\right)\right)$ | $\Theta(m \cdot \log m)$                       |
| Optimal deterministic | Any $d$                                                     | $\widetilde{\Theta}ig(m/_{kd}ig)$              |
| Optimal randomized    | Any $d$                                                     | $\widetilde{\Theta}\left(^{m}/_{kd^{3}} ight)$ |

### **Quantitative Fairness**

- If we knew the utility profile  $\vec{u}$ :
  - Efficiency would ask us to select  $x^* \in \arg \max_{x} sw(x, \vec{u})$
  - What about fairness?
- Proportional Fairness

$$PF(x, \vec{u}) = \sup_{y} \sum_{i} \frac{u_i(y)}{u_i(x)}$$

- Maximum total % change in utilities when moving to any other distribution y
- Folklore: If we knew  $\vec{u}$ , choosing  $x^* \in \arg\max_x \prod_i u_i(x)$  would guarantee  $PF(x^*, \vec{u}) = 1$



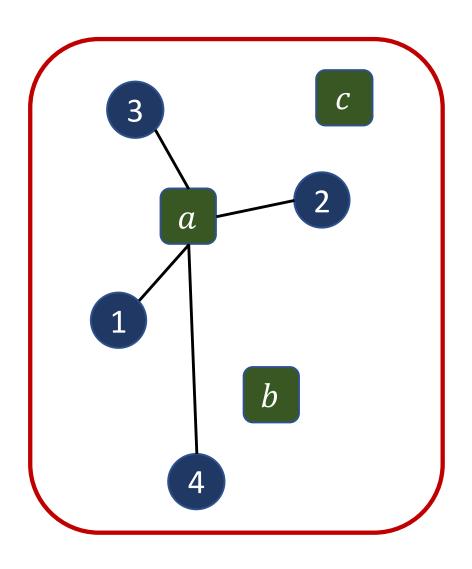
## **Proportional Fairness**

- Theorem [EKPS'22]:
  - Stable committee\* rule with ranked ballots achieves  $O(\sqrt{m})$  proportional fairness.
- Theorem [EKPS'22]:
  - There exists an efficient randomized voting rule with ranked ballots that achieves  $O(\log m)$  proportional fairness.
    - Uses a stronger form of the minimax theorem with a slightly more intricate proof
- Theorem [EKPS'22]:
  - Every randomized voting rule with ranked ballots has proportional fairness  $\Omega(\log m)$ .

<sup>\*</sup> Similar to the stable lottery rule

### **Proportional Fairness**

• Hmm, I don't really buy proportional fairness as a notion of fairness...


#### Core

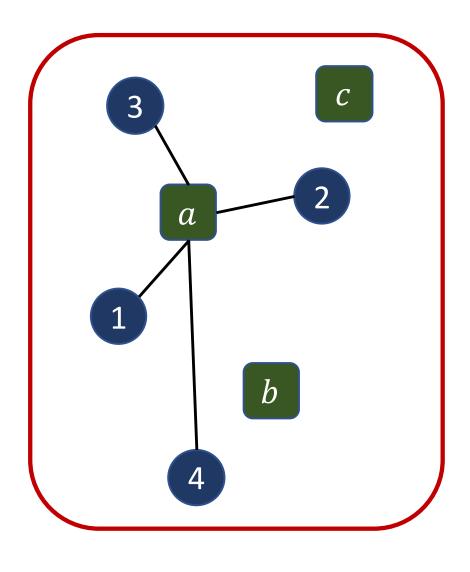
- Definition: Any subgroup of x % of voters cannot find a Pareto improvement over the given outcome by allocating x % of the probability mass (or budget), for any x
- Folklore:  $\alpha$  proportional fairness implies  $\alpha$ -approximation of the core
- Corollary: There exists a distribution in  $O(\log m)$ -approximate core
- Known lower bound: 2-approximate core
- Open question: Close the gap!

## **Proportional Fairness**

- Hmm, I don't really buy proportional fairness as a notion of fairness...
- Distortion with respect to the Nash welfare
  - Definition:  $\operatorname{dist}^{\operatorname{Nash}}(x, \vec{\sigma}) = \sup_{\vec{u} \, \triangleright \, \vec{\sigma}} \frac{\max\limits_{a \in A} nsw(a, \vec{u})}{nsw(x, \vec{u})}$ , where  $nsw(x, \vec{u}) = (\prod_i u_i(x))^{1/n}$
  - Folklore:  $\alpha$  proportional fairness implies  $\alpha$  distortion w.r.t. the Nash welfare
  - Corollary: There exists an efficiently computable distribution that gives  $O(\log m)$  distortion with respect to the Nash welfare
  - Known lower bound:  $e \approx 2.717$
  - Open question: Close the gap!

### **Future Work: Metric Distortion**




#### Metric Distortion

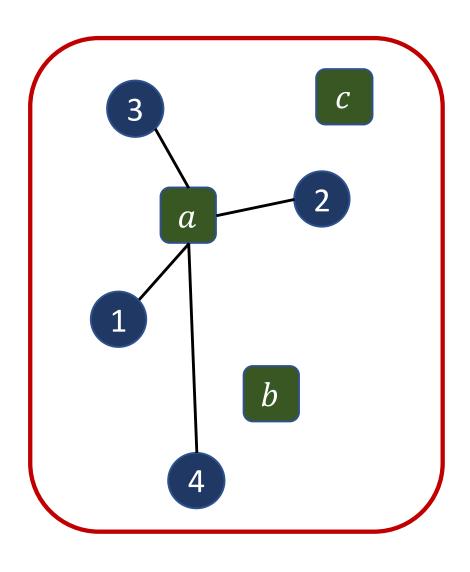
- Voters and candidates embedded in an underlying metric space ( $\Delta$  inequality)
- <u>Cost</u> of a voter for a candidate is the distance between the two
- Approximation of social cost

### • Ranked ballots, single-winner

- Deterministic: 3 [GHS'20]
- Randomized: in [2.0261, 3) [CR'21]
  - Open question!

### **Future Work: Metric Distortion**




#### Metric Distortion

- Voters and candidates embedded in an underlying metric space ( $\Delta$  inequality)
- <u>Cost</u> of a voter for a candidate is the distance between the two
- Approximation of social cost

#### • Ranked ballots, committee of size k

- $c_i(S) = qt^h \min_{a \in S} d(i, a)$
- Trichotomy:
  - $1 \le q \le k/3 : \infty$
  - $k/_3 < q \le k/_2 : \Theta(n)$
  - $k/_2 < q \le k : 3$ 
    - We only know how to achieve 9 in polynomial time

### **Future Work: Metric Distortion**



#### Metric Distortion

- Voters and candidates embedded in an underlying metric space ( $\Delta$  inequality)
- <u>Cost</u> of a voter for a candidate is the distance between the two
- Approximation of social cost
- What about other ballot formats?
- What about optimizing the ballot format?
- How can we model participatory budgeting in the metric distortion framework?

## Future Work: Ballot Design



- Common ballot designs
  - Pairwise comparisons, "Do you like candidate a at least twice as much as candidate b?", ...
- Better models of cognitive burden
  - Psychology, HCI, ...
- Voter errors in answering ballots
  - Expressive ballots can also induce errors
- Intangible aspects of ballot design
  - Barcelona PB team: "Knapsack votes are good because they help voters understand the limitations of the budget."

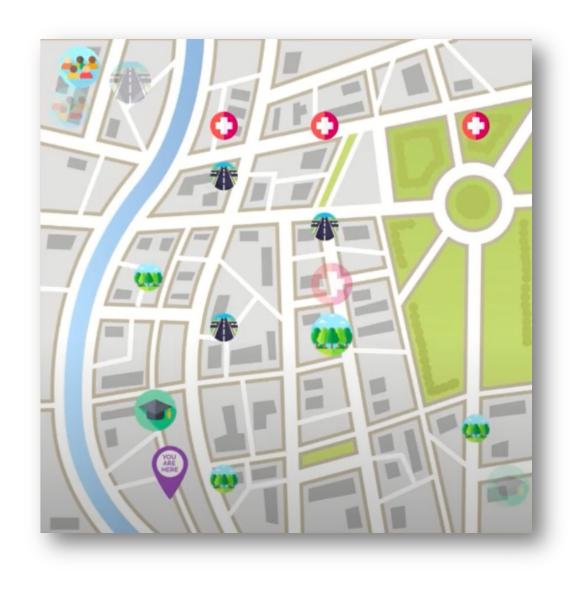
### Future Work: Distortion vs Other Desiderata





#### Distortion & Truthfulness

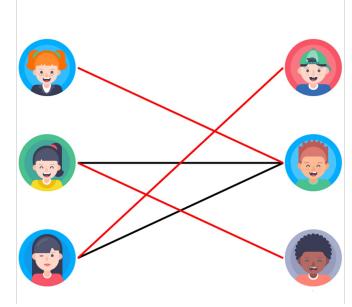
- With ranked ballots, optimal  $\widetilde{\Theta}(\sqrt{m})$  distortion can be achieved via truthful aggregation
- What happens with other ballot formats?


#### Distortion & Axioms

 Can we achieve low distortion together with popular axioms?

#### Distortion & Explainability

Explaining the voting rule vs explaining what it does


## Future Work: More Complex Voting Paradigms



- Design optimal voting rules for more complex voting paradigms
  - Participatory budgeting
  - Districting
- Model end-to-end voting
  - In participatory budgeting, voting is but the final step of a year-long process
- Compare different models of democracy
  - E.g., direct democracy, representative democracy, and liquid democracy
  - [Borodin, Lev, S., Strangway, 2019]: Compared primary vs direct elections

## **Future Work: Distortion Beyond Voting**





- Distortion ("price of missing information") beyond voting
  - Fair division [HS'21; EFS'22]
  - One-sided Matching [ABFV'22; MML'21]
  - Two-sided matching?
  - Coalition formation in hedonic games?
  - Graph problems [AS'16; AZ'17; AZ'18; AA'18]



#### Poll Types

RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote which scenario best fits the problem at hand.



#### **Objective Opinions**

In this scenario, some alternatives are objectively better than others, and the opinion of a participant reflects an attempt to estimate the correct order. RoboVote's proposed outcome is guaranteed to be as close as possible — based on the available information — to the best outcome. Examples include deciding which product prototype to develop, or which company to invest in, based on a metric such as projected revenue or market share.



#### Subjective Preferences

In this scenario participants' preferences reflect their subjective taste; RoboVote proposes an outcome that mathematically makes participants as happy as possible overall. Common examples include deciding which restaurant or movie to go to as a group.

Ready to get started?

CREATE A POLL

Thank you!

Questions?